
DD::Fluid::Solver::SolverFire (sketches 0438)

Nafees bin Zafar
nafees@d2.com

Henrik Falt
hfalt@d2.com

Chamberlain Fong
cfong@d2.com

Mir Zafar Ali
mzali@d2.com

Digital Domain

This paper describes an implementation of a fire simulation tool
used by artists at Digital Domain. We discuss choices of compu-
tational techniques, practicalities of initiating a fire, user controls,
and useful data outputs to aid rendering.

Keywords: fluid dynamics, fire simulation, visual effects.

Simulation Method

We required a simulator which could produce complex and turbu-
lent flames. Artifacts such as flame sheet separation, or multiple
flame interactions, are difficult to produce with single-phase
incompressible Navier-Stokes solvers. We chose to employ the
multi-phase fire simulation scheme introduced by Nguyen et al
[2002]. The reacting vaporized fuel, or blue core, is simulated like
a liquid, and tracked with a particle corrected level set surface.
Temperatures and densities are generated around the blue core to
drive the gaseous phase. The two phases are modelled separately,
and subsequently coupled by enforcing mass and momentum
conservation.

The blue core level set can undergo interesting topology
changes, which greatly adds to the turbulent look of the simulation.
Boundary and solid fuel objects are also represented with level sets.
We utilize a new stable semi-lagrangian level set advection tech-
nique [Enright et al. 2004] which provides significant performance
gains over the traditional method by taking fewer timesteps than
prescribed by the CFL limit. We maintain fields such as velocity
and temperature separately for the two phases. This data separation
and the numerically independent nature of the phase coupling
provides us an opportunity to perform the linkage calculations in
parallel.

Fuel and Ignition

Our simulator introduces a new vaporized fuel type, in addition to
solid fuels described by Nguyen et al. Ignition involves generating
a blue core level set from a burning fuel, and setting corresponding
initial velocities. The user specifies regions at ignition temperature,
and the simulator starts a reaction zone if fuel occupies those
regions. The ignition regions can be animated, thus allowing artists
to direct initiation and progression of a flame. The user may also
directly model a blue core to start a fire.

A solid fuel object can be ignited by placing the burning
voxels in a temporary level set interior. The reinitialized level set
is then inflated by a user specified expansion term, and clipped
against all boundary objects via CSG operations. Velocities in this
new region are set to the expansion term along the normal vector.
The vaporized fuel ignition involves additional velocity terms to
model the explosion-like ignition. This subject is covered in further
detail in a separate presentation.

Simulation Controls

The hot gaseous product generation is driven by a reaction
coordinate field. This concept proposed by Nguyen et al. uses a
scalar term representing the amount of time a fluid sample has
been away from the blue core. Since their formulation inversely
relates the coordinate with reaction progression it is more intuitive
to provide the user a direct time parameter (t = Yinitial −Y, where
Y is the reaction coordinate).

A fire will affect all of a small simulation space very quickly.
If the simulation space extents are boundaries, then undesirable
artifacts will occur from the feedback of forces from these walls.
We allow for “wall-less” simulations by explicitly setting the
staggered velocity component on the wall equal to the component
on the opposing voxel face. This is performed for all voxels on the
simulation bounds prior to the divergence correction step.

Figure 1: Previsualization of a fire with solid and vapor fuels.

Renderer Support

Velocity, temperature, and density fields are sufficient for photore-
alistic rendering of a single frame, but over a sequence spatial co-
herence of large scale procedural noise patterns must be established.
Fluid fields provide insufficient data to achieve this, so we resort to
flowing particles along the simulation with each internal timestep.
Particles are birthed by the simulator in areas specified by the reac-
tion time parameter, and only live for a limited time. Each particle
carries the internal fluid fields, and an orientation vector. Particle
orientation can be calculated by accumulating the rotational com-
ponent of the fluid (Cauchy-Stokes decomposition) along the parti-
cle’s path.

References

ENRIGHT, D., LOSASSO, F., AND FEDKIW, R. 2004. A
fast and accurate semi-lagrangian particle level set method.
http://graphics.stanford.edu/˜fedkiw/papers/stanford2003-
10.pdf. In review.

NGUYEN, D., FEDKIW, R., AND JENSEN, H. 2002. Physically
based modelling and animation of fire.ACM Transaction on
Graphics 21, 721–728.


